Tuesday, October 16, 2012

No TISK or Mental Math problems this week.

Homework:

p. 199-200 #9, 10, 12, 24, 27-29all, 30-34even

4-1 & 4-2 Worksheet Check

I-6 are sample answers:

2)

۲)

4)

7)
$$\overline{AB}$$
, \overline{BC} , \overline{AC}

- 8) $\angle A$, $\angle B$, & $\angle ACB$
- **9**) ∠*ACB*
- **10**) ∠*A* & ∠*B*
- II) \overline{AB}
- 12) $\overline{BC} \& \overline{AC}$
- **I3**) ∠*B*

4-1 & 4-2 Worksheet Check

- **14) 61**
- 15) 20
- 16) 55
- 17) 112
- 18) 112 $m \angle 3$ (*this is different than 9A saw!)
- **19) 112** *m*∠2
- 20) $m \angle E = 81^{\circ}, m \angle D = 27^{\circ}, m \angle F = 72^{\circ}$

- Congruent means "having the same shape and size".
- So what would it take for two triangles to be congruent?
 - All the angles are congruent.
 - All the sides are congruent.

$$\triangle ABC \cong \triangle DEF \Leftrightarrow$$
 $\angle A \cong \angle D, \angle B \cong \angle E, \angle C \cong \angle F,$
 $\overline{AB} \cong \overline{DE}, \overline{BC} \cong \overline{EF}, \overline{AC} \cong \overline{DF}$

Theorem:

(CPCTC – Corresponding Parts of Congruent Triangles are Congruent)

Two triangles are congruent if and only if their corresponding parts are congruent.

- Given: $\overline{TU} \perp \overline{RS}$, $\angle R \cong \angle S$, $\overline{UR} \cong \overline{US}$, $\overline{TR} \cong \overline{TS}$
- Prove: $\Delta TUR \cong \Delta TUS$

 $\angle RTU \cong \angle STU$

Plan for Proof: Show all three pairs of angles and all three pairs of sides are congruent

If
$$\bot \Rightarrow 4 \text{ rt } \angle s$$
 $\angle R \cong \angle S$ (G)
$$\bot \longrightarrow 4 \text{ rt. } \angle s \longrightarrow \angle TUR \cong \angle TUS$$
(G)
Rt. $\angle s \text{ are } \cong$ $\exists \text{rd } \angle s \text{ Th.}$

$$\overline{UR} \cong \overline{US}$$
 (G)

$$\overline{TR} \cong \overline{TS}$$
 (G)

$$\overline{TU} \cong \overline{TU}$$
 (Reflexive)

• Given: $\overline{TU} \perp \overline{RS}$, $\angle R \cong \angle S$, $\overline{UR} \cong \overline{US}$, $\overline{TR} \cong \overline{TS}$

• Prove: $\Delta TUR \cong \Delta TUS$

Statement	Reason
$ \begin{array}{c} I) \ \overline{TU} \perp \overline{RS}, \angle R \cong \angle S, \\ \overline{UR} \cong \overline{US}, \overline{TR} \cong \overline{TS} \end{array} $	I) Given
2) $\angle TUR \& \angle TUS$ are rt. \angle s	2) If lines are $\bot \Rightarrow$ they form 4 rt \angle s
3) $\angle TUR \cong \angle TUS$	3) Right Angle Theorem
4) $\angle RTU \cong \angle STU$	4) 3 rd Angles Theorem
5) $\overline{TU} \cong \overline{TU}$	5) Reflexive Prop. of Segment \cong
$6) \ \Delta TUR \cong \Delta TUS$	6) If corresponding parts are \cong then 2 Δ s are \cong

- Congruence of Triangles is Symmetric,
 Reflexive and Transitive
- Symmetric Property of $\cong \Delta s$:
 - If $\triangle ABC \cong \triangle DEF \Rightarrow \triangle DEF \cong \triangle ABC$
- Reflexive Property of $\cong \Delta s$:
 - If $\triangle ABC$ exists $\Rightarrow \triangle ABC \cong \triangle ABC$
- Transitive Property of $\cong \Delta s$:
 - If $\triangle ABC \cong \triangle DEF$ and $\triangle DEF \cong \triangle GHI$ $\Rightarrow \triangle ABC \cong \triangle GHI$

Homework

• p. 199-200

#9, 10, 12, 24, 27-29all, 30-34even

